1,4q+q^2=0,51

Simple and best practice solution for 1,4q+q^2=0,51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1,4q+q^2=0,51 equation:



1.4q+q^2=0.51
We move all terms to the left:
1.4q+q^2-(0.51)=0
We add all the numbers together, and all the variables
q^2+1.4q-0.51=0
a = 1; b = 1.4; c = -0.51;
Δ = b2-4ac
Δ = 1.42-4·1·(-0.51)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.4)-2}{2*1}=\frac{-3.4}{2} =-1+1/1.4285714285714 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.4)+2}{2*1}=\frac{0.6}{2} =0.6/2 $

See similar equations:

| 9xx=6 | | 80+x+23+4x+17=`80 | | (-x)/8+3=9 | | Z³-4i=0 | | 7(q+1)=9 | | 27c+10=864 | | (x^2-3x+15)^2=0 | | (2x+80)-80=180-80 | | -x^2+10x+20=0 | | 14/y-7-2/y=19y+7/y^2-49 | | -90-2x=8x+110 | | -x^2-10x+20=0 | | -42÷21=6÷n | | 9(4+x)=12 | | 3x-5(x-2)=-4+2x+6 | | y+8=-6y-3 | | 2=6/x-2 | | 3x+15=1/2x-6 | | 4(s-18)=8 | | 18m-13m=35 | | 4v+128=12v | | 4w+7=97 | | 4x-3/2=8x-10/8+2×4/3 | | 2y+29-8y=-32 | | 2x=1=4 | | y+29-8y=-32 | | 32+4x+24=180 | | 2x-171=11x+63 | | 4(x+5=0 | | 4n+5(6-2)=30 | | -16p+-p=17 | | 7z+4=11 |

Equations solver categories